Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
通过利用数据示例多样性,早期的exit网络最近成为一种突出的神经网络体系结构,以加速深度学习推断过程。但是,早期出口的中间分类器会引入其他计算开销,这对于资源约束的边缘人工智能(AI)不利。在本文中,我们提出了一种早期退出预测机制,以减少由早期EXIT网络支持的设备边缘共同指导系统中的设备计算开销。具体而言,我们设计了一个低复杂性模块,即出口预测指标,以指导一些明显的“硬”样品以绕过早期出口的计算。此外,考虑到不同的通信带宽,我们扩展了潜伏期感知的边缘推理的提前退出预测机制,该机制通过一些简单的回归模型适应了出口预测变量的预测阈值和早期EXEST网络的置信阈值。广泛的实验结果证明了退出预测因子在早期EXIT网络的准确性和设备计算开销之间取得更好的权衡。此外,与基线方法相比,在不同的带宽条件下,提出的延迟感知边缘推理的方法可以达到更高的推理精度。
translated by 谷歌翻译
Federated学习(FL)最近已成为流行的隐私合作学习范式。但是,它遭受了客户之间非独立和相同分布的(非IID)数据的困扰。在本文中,我们提出了一个新颖的框架,称为合成数据辅助联合学习(SDA-FL),以通过共享合成数据来解决这一非IID挑战。具体而言,每个客户端都预测了本地生成对抗网络(GAN)以生成差异化私有合成数据,这些数据被上传到参数服务器(PS)以构建全局共享的合成数据集。为了为合成数据集生成自信的伪标签,我们还提出了PS执行的迭代伪标记机制。本地私人数据集和合成数据集与自信的伪标签的结合可导致客户之间的数据分布几乎相同,从而提高了本地模型之间的一致性并使全球聚合受益。广泛的实验证明,在监督和半监督的设置下,所提出的框架在几个基准数据集中的大幅度优于基线方法。
translated by 谷歌翻译
Federated学习(FL)作为保护分布式机器学习框架引起了很多关注,许多客户通过将模型更新与参数服务器交换而不是共享其原始数据来协作训练机器学习模型。然而,FL培训遭受了缓慢的收敛性和不稳定的性能,这是由于客户的异质计算资源引起的散乱者和沟通率的波动。本文提出了一个编码的FL框架来减轻Straggler问题,即随机编码的联合学习(SCFL)。在此框架中,每个客户端通过将附加噪声添加到其本地数据的随机线性组合中,从而生成一个隐私的编码数据集。服务器从所有客户端收集编码的数据集来构建复合数据集,这有助于补偿散布效果。在培训过程中,服务器和客户端执行迷你批次随机梯度下降(SGD),并且服务器在模型聚合中添加了一个化妆术语,以获得无偏的梯度估计。我们通过共同信息差异隐私(MI-DP)来表征隐私保证,并分析联合学习中的收敛性能。此外,我们通过分析隐私约束对收敛率的影响,证明了拟议的SCFL方法的隐私性绩效权衡。最后,数值实验证实了我们的分析,并显示了SCFL在保持数据隐私的同时实现快速收敛的好处。
translated by 谷歌翻译
联邦边缘学习(诱导)吸引了许多隐私范例的关注,以有效地纳入网络边缘的分布式数据来训练深度学习模型。然而,单个边缘服务器的有限覆盖范围导致参与者的客户节点数量不足,这可能会损害学习性能。在本文中,我们调查了一种新颖的感觉框架,即半分散的联邦边缘学习(SD-INES),其中采用多个边缘服务器集体协调大量客户端节点。通过利用边缘服务器之间的低延迟通信进行高效的模型共享,SD-Feels可以包含更多的培训数据,同时与传统联合学习相比享受更低的延迟。我们详细介绍了三个主要步骤的SD感觉的培训算法,包括本地模型更新,群集内部和群集间模型聚合。在非独立和相同分布的(非IID)数据上证明了该算法的收敛性,这也有助于揭示关键参数对培训效率的影响,并提供实用的设计指南。同时,边缘装置的异质性可能导致级体效应并降低SD感应的收敛速度。为了解决这个问题,我们提出了一种具有SD-Iave的稳定性舒长方案的异步训练算法,其中,还分析了收敛性能。模拟结果展示了所提出的SD感觉和证实我们分析的算法的有效性和效率。
translated by 谷歌翻译
联邦边缘学习(诱导)被认为是一个隐私保留的移动边缘网络的分布式学习框架。在这项工作中,我们调查了一种新的半分散式感觉(SD-enve)架构,其中多个边缘服务器协作以将更多数据从边缘设备纳入训练中。尽管通过快速聚合使能低训练延迟,但计算资源中的设备异质性劣化了效率。本文提出了一种异步训练算法来克服这个问题,其中边缘服务器可以独立设置相关的客户端节点的截止日期并触发模型聚合。要处理不同层次的僵化,我们设计了一个僵化意识的聚合方案并分析其收敛性能。仿真结果展示了我们所提出的算法在实现更快的收敛性和更好的学习性能方面的有效性。
translated by 谷歌翻译
本文研究了多个设备合作边缘推理的面向任务的通信,其中一组分布式的低端边缘设备将本地样品的提取功能传输到强大的边缘服务器以进行推理。尽管合作边缘推理可以克服单个设备的有限传感能力,但它大大增加了通信开销并可能产生过度延迟。为了启用低延迟合作推断,我们提出了一种基于学习的通信方案,该方案以面向任务的方式优化本地功能提取和分布式功能,即删除数据冗余和传输信息,这对于下游推断任务至关重要而不是重建边缘服务器上的数据示例。具体而言,我们利用信息瓶颈(IB)原理在每个边缘设备上提取与任务相关的功能,并采用分布式信息瓶颈(DIB)框架来形式化分布式特征的最佳速率 - 权利权限权衡的单字母表征。为了承认对通信开销的灵活控制,我们将DIB框架扩展到分布式确定性信息瓶颈(DDIB)目标,该目标明确合并了编码功能的代表性成本。由于基于IB的目标对高维数据的计算过敏性,因此我们采用各种近似值来使优化问题可处理。为了补偿由于变异近似而引起的潜在性能损失,我们还开发了选择性重传(SR)机制,以识别多个边缘设备的编码特征中的冗余,以实现额外的通信高架降低。广泛的实验证明,所提出的面向任务的交流方案比基线方法实现了更好的利率权衡权衡。
translated by 谷歌翻译
联邦边缘学习(诱导)已成为一种有效的方法来减少基于云的机器学习解决方案的大型通信延迟,同时保留数据隐私。不幸的是,由于单边簇中的训练数据有限,感觉的学习性能可能会受到损害。在本文中,我们调查了一种新颖的感觉框架,即半分散的联邦边缘学习(SD-Inve)。通过允许不同边缘集群的模型聚合,SD-vee致力于减少培训延迟的感觉,同时通过访问来自多个边缘集群的更丰富的训练数据来提高学习性能。介绍了每轮三个主要过程的SD-ide的训练算法,包括本地模型更新,集群内部和群集间模型聚合,这被证明是在非独立和相同分布的(非IID)数据上收敛。我们还表征了边缘服务器的网络拓扑之间的相互作用以及在训练性能上群集间模型聚合的通信开销。实验结果证实了我们的分析,并展示了SD-FFEL在实现比传统联邦学习架构更快的收敛方面的有效性。此外,还提供了选择训练算法关键超参数的指导方针。
translated by 谷歌翻译
As one of the most important psychic stress reactions, micro-expressions (MEs), are spontaneous and transient facial expressions that can reveal the genuine emotions of human beings. Thus, recognizing MEs (MER) automatically is becoming increasingly crucial in the field of affective computing, and provides essential technical support in lie detection, psychological analysis and other areas. However, the lack of abundant ME data seriously restricts the development of cutting-edge data-driven MER models. Despite the recent efforts of several spontaneous ME datasets to alleviate this problem, it is still a tiny amount of work. To solve the problem of ME data hunger, we construct a dynamic spontaneous ME dataset with the largest current ME data scale, called DFME (Dynamic Facial Micro-expressions), which includes 7,526 well-labeled ME videos induced by 671 participants and annotated by more than 20 annotators throughout three years. Afterwards, we adopt four classical spatiotemporal feature learning models on DFME to perform MER experiments to objectively verify the validity of DFME dataset. In addition, we explore different solutions to the class imbalance and key-frame sequence sampling problems in dynamic MER respectively on DFME, so as to provide a valuable reference for future research. The comprehensive experimental results show that our DFME dataset can facilitate the research of automatic MER, and provide a new benchmark for MER. DFME will be published via https://mea-lab-421.github.io.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译